A Generalization of the Conservation Integral
نویسنده
چکیده
Starting from the scheme given by Hudson and Parthasarathy 7, 11] we extend the conservation integral to the case where the underlying operator does not commute with the time observable. It turns out that there exist two extensions, a left and a right conservation integral. Moreover, It^ o's formula demands for a third integral with two integrators. Only the left integral shows similar continuity properties to that derived in 11] used for extending the integral to more than simple integrands. In another approach we extend the previous notions for the integrals to much larger domains of deenition and to much more processes, including anticipating ones. Similar to 5, 10], we use the Skorohod integral and the Malliavin derivative acting on a symmetric Fock space 3, 4]. It appears that this formulation uniies all three integrals in the double integrator one.
منابع مشابه
A Generalization of the Meir-Keeler Condensing Operators and its Application to Solvability of a System of Nonlinear Functional Integral Equations of Volterra Type
In this paper, we generalize the Meir-Keeler condensing operators via a concept of the class of operators $ O (f;.)$, that was given by Altun and Turkoglu [4], and apply this extension to obtain some tripled fixed point theorems. As an application of this extension, we analyze the existence of solution for a system of nonlinear functional integral equations of Volterra type. Finally, we p...
متن کاملExistence of solutions of infinite systems of integral equations in the Frechet spaces
In this paper we apply the technique of measures of noncompactness to the theory of infinite system of integral equations in the Fr´echet spaces. Our aim is to provide a few generalization of Tychonoff fixed point theorem and prove the existence of solutions for infinite systems of nonlinear integral equations with help of the technique of measures of noncompactness and a generalization of Tych...
متن کاملAN INTEGRAL DEPENDENCE IN MODULES OVER COMMUTATIVE RINGS
In this paper, we give a generalization of the integral dependence from rings to modules. We study the stability of the integral closure with respect to various module theoretic constructions. Moreover, we introduce the notion of integral extension of a module and prove the Lying over, Going up and Going down theorems for modules.
متن کاملOn Generalization of Cebysev Type Inequalities
In this paper, we establish new Cebysev type integral inequalities involving functions whose derivatives belong to L_{p} spaces via certain integral identities.
متن کاملGreedy decomposition integrals
In this contribution we define a new class of non-linear integrals based on decomposition integrals. These integrals are motivated by greediness of many real-life situations. Another view on this new class of integrals is that it is a generalization of both the Shilkret and PAN integrals. Moreover, it can be seen as an iterated Shilkret integral. Also, an example in time-series analysis is prov...
متن کاملGeneralization of Darbo's fixed point theorem and application
In this paper, an attempt is made to present an extension of Darbo's theorem, and its applicationto study the solvability of a functional integral equation of Volterra type.
متن کامل